Locking-to-unlocking system is an efficient strategy to design DNA/silver nanoclusters (AgNCs) probe for human miRNAs
نویسندگان
چکیده
MicroRNAs (miRNAs), small non-coding RNA molecules, are important biomarkers for research and medical purposes. Here, we describe the development of a fast and simple method using highly fluorescent oligonucleotide-silver nanocluster probes (DNA/AgNCs) to efficiently detect specific miRNAs. Due to the great sequence diversity of miRNAs in humans and other organisms, a uniform strategy for miRNA detection is attractive. The concept presented is an oligonucleotide-based locking-to-unlocking system that can be endowed with miRNA complementarity while maintaining the same secondary structure. The locking-to-unlocking system is based on fold-back anchored DNA templates that consist of a cytosine-rich loop for AgNCs stabilization, an miRNA recognition site and an overlap region for hairpin stabilization. When an miRNA is recognized, fluorescence in the visible region is specifically extinguished in a concentration-dependent manner. Here, the exact composition of the fold-back anchor for the locking-to-unlocking system has been systematically optimized, balancing propensity for loop-structure formation, encapsulation of emissive AgNCs and target sensitivity. It is demonstrated that the applied strategy successfully can detect a number of cancer related miRNAs in RNA extracts from human cancer cell lines.
منابع مشابه
Effect of salts, solvents and buffer on miRNA detection using DNA silver nanocluster (DNA/AgNCs) probes.
MicroRNAs (miRNAs) are small regulatory RNAs (size ~21 nt to ~25 nt) which regulate a variety of important cellular events in plants, animals and single cell eukaryotes. Especially because of their use in diagnostics of human diseases, efforts have been directed towards the invention of a rapid, simple and sequence selective detection method for miRNAs. Recently, we reported an innovative metho...
متن کاملToward site-specific, homogeneous and highly stable fluorescent silver nanoclusters fabrication on triplex DNA scaffolds
A new strategy to create site-specific, homogeneous, and bright silver nanoclusters (AgNCs) with high-stability was demonstrated by triplex DNA as template. By reasonable design of DNA sequence, homogeneous Ag(2) cluster was obtained in the predefined position of CG.C(+) site of triplex DNA. This strategy was also explored for controlled alignment of AgNCs on the DNA nanoscaffold. To the best o...
متن کاملIn-solution multiplex miRNA detection using DNA-templated silver nanocluster probes.
MicroRNAs (miRNAs) are small regulatory RNAs (size ∼21nt to ∼25nt) that can be used as biomarkers of disease diagnosis, and efforts have been directed towards the invention of a rapid, simple and sequence-selective detection method for miRNAs. We recently developed a DNA/silver nanoclusters (AgNCs)-based turn-off fluorescence method in the presence of target miRNA. To further advance our method...
متن کاملMicroRNA Biomarkers in Neurodegenerative Diseases and Emerging NanoSensors Technology
MicroRNAs (miRNAs) are essential small RNA molecules (20-24 nt) that negatively regulate the expression of target genes at the post-transcriptional level. Due to their roles in a variety of biological processes, the aberrant expression profiles of miRNAs have been identified as biomarkers for many diseases, such as cancer, diabetes, cardiovascular disease and neurodegenerative diseases. In orde...
متن کاملPolyethyleneimine Capped Silver Nanoclusters as Efficient Antibacterial Agents.
Development of efficient antibacterial agents is critical for human health. In the present study, we investigated the antibacterial activity of polyethyleneimine (PEI)-capped silver nanoclusters (PEI-AgNCs), based on the fact that nanoclusters normally have higher surface-to-volume ratios than traditional nanomaterials and PEI itself has a strong antimicrobial capacity. We synthesized stable si...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 44 شماره
صفحات -
تاریخ انتشار 2016